Locally compact tight Riesz groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On component extensions locally compact abelian groups

Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...

متن کامل

Bracket Products on Locally Compact Abelian Groups

We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).

متن کامل

From Locally Compact Groups

Two Banach algebras are naturally associated with a locally compact group G: the group algebra, L,(G), and the measure algebra, M(G). For these two Banach algebras we determine all isometric involutions. Each of these Banach algebras has a natural involution. We will show that an isometric involution, (*), is the natural involution on £'(<?) if and only if the closure in the strict topology of ...

متن کامل

Locally compact abelian groups

These notes are a gloss on the first chapter of Walter Rudin’s Fourier Analysis on Groups, and may be helpful to someone reading Rudin. The results I do prove are proved in more detail than they are in Rudin. I caution that before reading the first chapter of that book it is know about the Gelfand transform on commutative Banach algebras because results from that are used without even stating t...

متن کامل

Pseudoframe multiresolution structure on abelian locally compact groups

‎Let $G$ be a locally compact abelian group‎. ‎The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$‎. ‎Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level‎. ‎Also‎, ‎the construction of affine frames for $L^2(G)$ bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1975

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788700029542